Cutting temperature in rotary ultrasonic machining of titanium: experimental study using novel Fabry-Perot fibre optic sensors
نویسندگان
چکیده
Titanium has a wide variety of applications, particularly in the aerospace industry. However, because of its low thermal conductivity and high strength, machining of titanium is very difficult. The heat generated in machining can dramatically shorten the tool life. Rotary ultrasonic machining (RUM) is a non-traditional machining process, and has been used to machine various difficult-to-machine materials. Investigations have been reported regarding effects of machining variables (including ultrasonic power, tool rotation speed, and feedrate) on several output variables in RUM, such as cutting force, torque, surface roughness, edge chipping, material removal rate, and tool wear. However, there have been few studies on cutting temperatures in RUM. This paper presents an experimental study on cutting temperature in Cutting temperature in rotary ultrasonic machining of titanium 251 RUM of titanium. It is the first study to utilise fibre optic temperature sensors to measure the cutting temperature in RUM. The results revealed effects of machining variables on cutting temperature in RUM, and demonstrated that Fabry-Perot (FP) fibre optic sensors offer more accurate localised measurement of temperature in RUM than thermocouples. [Received 30 January 2012; Revised 4 August 2012; Accepted 22 September 2012]
منابع مشابه
Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies
Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the automotive and aerospace industry. A great deal of effort has been made to develop and improve the machining operations of Ti6Al4V alloys. This paper presents an experimental study that systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle speed, and tool diamete...
متن کاملRotary ultrasonic machining of ceramics: design of experiments
Rotary ultrasonic machining is one of the nontraditional machining processes for advanced ceramics. Currently available in literature are publications on theoretical and experimental studies on material removal rates in rotary ultrasonic machining. However, there is no report on the systematic study of the cutting force in rotary ultrasonic machining. Furthermore, the effects of some process pa...
متن کاملWavelet analysis of optical signal extracted from a non-contact fibre-optic vibration sensor using an extrinsic Fabry–Perot interferometer
Interferometric optical fibre sensors have proved to be many orders of magnitude more sensitive than their electrical counterparts, but they suffer from limitations in signal demodulation caused by phase ambiguity and complex fringe counting when the output phase difference exceeds one fringe period and for multiple fringes. This paper presents a novel signal decoding technique based on the wav...
متن کاملMachinability evaluation of Titanium alloy in Laser Assisted Turning
The use of titanium and its alloys has increased in various industries recently, because of their superior properties of these alloys. Titanium alloys are generally classified as difficult to machine materials because of their thermo-mechanical properties such as high strength-to-weight ratio and low thermal conductivity. Laser Assisted Machining (LAM) improves the machinability of high strengt...
متن کاملBragg grating-based fibre optic sensors in structural health monitoring.
This work first considers a review of the dominant current methods for fibre Bragg grating wavelength interrogation. These methods include WDM interferometry, tunable filter (both Fabry-Perot and acousto-optic) demultiplexing, CCD/prism technique and a newer hybrid method utilizing Fabry-Perot and interferometric techniques. Two applications using these techniques are described: hull loads moni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJMR
دوره 8 شماره
صفحات -
تاریخ انتشار 2013